The effect of magnetic nanoparticles of Fe3O4 on immune function in normal ICR mice

نویسندگان

  • Bao-An Chen
  • Nan Jin
  • Jun Wang
  • Jiahua Ding
  • Chong Gao
  • Jian Cheng
  • Guohua Xia
  • Feng Gao
  • Yin Zhou
  • Yue Chen
  • Guina Zhou
  • Xiaomao Li
  • Yu Zhang
  • Men Tang
  • Xuemei Wang
چکیده

We investigated the effect of magnetic nanoparticles of Fe(3)O(4) (Fe(3)O(4)-MNPs) on the mice immune system. Imprinting control region (ICR) mice were assigned randomly into four groups and treated with normal saline or low, medium, or high doses of Fe(3)O(4)-MNPs, respectively. After intravenous administration of Fe(3)O(4)-MNPs for 72 hours, the peripheral T cells and the induction of primary immune responses in mice were investigated by flow cytometry and determined using enzyme-linked immunosorbent assay, respectively. The results showed that the ratio of spleen to body weight was not different between the experimental groups and control group (P > 0.05). The lymphocyte transformation rates in the suspension of spleen were higher in low-dose group than those in the control group (P < 0.05), while the proliferation of splenocytes was low in the medium and high groups when compared to the control group (P < 0.05). In peripheral blood, both the proportions of subset CD4(+) and CD8(+) T lymphocytes in the low-dose group were higher than those in the control group, whereas there was no difference in the number of CD4(+) T cells between the medium- and low-dose groups. Interestingly, the Fe(3)O(4)-MNPs enhanced the production of interleukin-2 (IL-2), interferon-γ, and IL-10 but did not affect the production of IL-4 in peripheral blood. It is concluded that Fe(3)O(4)-MNPs could influence immune functions of normal ICR mice in a dose-dependent manner.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Magnetic Iron Oxide Nanoparticles on Mice Liver and Kidney

Background & Aims: In spite of frequent produce and use of magnetic nanoparticles in biological fields, there are few studies on their side effects, especially under in-vivo conditions. Method: In this research, the effect of the single-dose intraperitoneal injection of DMSA (dimercaptosuccinic acid) coated magnetic iron oxide nanoparticles (Fe3O4) in different doses (50, 100, 200 and 300 mg/kg...

متن کامل

Synthesis and Characterization of a Novel Fe3O4-SiO2@Gold Core-Shell Biocompatible Magnetic Nanoparticles for Biological and Medical Applications

Objectives: The study of core-shell magnetic nanoparticles has a wide range of applications because of the unique combination of the nanoscale magnetic core and the functional shell. Characterization and application of one important class of core-shell magnetic nanoparticles (MNPs), i.e., iron oxide core (Fe3O4/γ-Fe2O3) with a silica shell and outer of gold (Fe3O4-SiO2@Gold (FSG)) in Boron Neut...

متن کامل

Investigation the effect of Fe3O4 nanoparticles on liver and stress oxidative parameters at the presence of magnetic field in rat

Objective(s): This study was designed to evaluate the effect of Fe3O4 nanoparticles at presence of a constant magnetic field on rat liver and some stress oxidative parameters.Materials and Methods: Fe3O4 nanoparticles were synthesized by co-precipitation method using iron chloride (III) and iron sulphate (II). The nanoparticles properties were studied by XRD and TEM. Fourty male wistar rats wer...

متن کامل

The changes of T lymphocytes and cytokines in ICR mice fed with Fe3O4 magnetic nanoparticles

The aim of this article is to study the changes inhibited T lymphocytes and cytokines related to the cellular immunity in ICR (imprinting control region) mice fed with Fe(3)O(4) magnetic nanoparticles (Fe(3)O(4)-MNPs). The Fe(3)O(4)-MNPs were synthesized, and their characteristics such as particle size, zeta potential, and X-ray diffraction patterns were measured and determined. All ICR mice we...

متن کامل

Effect of dispersion state of the magnetic Fe3O4 nanoparticles on the thermal distribution in Hyperthermia

Introduction: Magnetic nanoparticle (MNP) hyperthermia is a promising cancer treatment approach. It is based on the evidence that by injecting MNPs such as Fe3O4 in the tumor and subjecting them to an alternating magnetic field, they release heat, generating temperatures up to 42°C that can kill cancer cells by apoptosis, usually with lowest damage to normal tissue. In previous...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2010